
Early Bankruptcy Detection Using Neural Networks

Gottfried Rudorfer
Department of Applied Computer Science

University of Economics and Business Administration
Augasse 2–6

A–1090 Vienna
Austria

rudorfer@a1.net

Abstract

In 1993, Austria had the highest number of bankruptcies
since 1945. The total liabilities came to approx.
US$ 3 Billion.

Powerful tools for early detection of company risks are
very important to avoid high economic losses. Artificial
neural networks(ANN) are suitable for many tasks in
pattern recognition and machine learning. In this paper we
present an ANN for early detection of company failures
using balance sheet ratios. The network has been
successfully tested with real data of Austrian private limited
companies. The research activities included the design of an
APL application with a graphical user interface to find out
the relevant input data and tune the ANN.

The developed APL workspace takes advantage of
modern windowing features running on IBM compatible
computers.

Keywords Artificial Neural Networks, Backpropagation,
Discriminant Analysis, Bankruptcy, Balance Sheet Ratios,
APL.

Motivation

Neural nets are currently being used to solve problems in
many different research areas. Generally, they tend to assist
or become an alternate way for traditional statistical and
mathematical models.

Their main practical applications in economics have
been for time series forecasting (i.e. [KR94]) and
classification tasks (i.e. [TK90]).

Banks usually check the creditworthiness of companies
to find the maximum amount of credit they are prepared to
grant. The models used are formulated as a classification
problem in a multidimensional space defined by a set of

financial ratios calculated using the balance sheet.
In this paper we try to use neural networks as

replacement for the widely used statistical discriminant
analysis to early detect company failures. With this
approach we bypass the disadvantages and problems with
statistical discriminant analysis:

The major problem with statistical discriminant analysis
is the assumption of a multivariate normal distribution of
the sample data. This assumption is very often violated in
practical problems.

We use multilayer feedforward networks also known as
multilayered perceptrons (MLPs), because they are a class
of universal approximators.

There exists a formal proof that "standard multilayer
feedforward networks with as few as one hidden layer using
arbitrary squashing functions are capable of approximating
any Borel measurable function from one finite dimensional
space to another to any desired accuracy, provided
sufficiently many hidden units are available". [HSW89].

The networks under investigation have the following
properties:

• the net consists of many simple processing devices
grouped into layers

• one input/output pair is randomly selected and passed to
the artificial neural network after transforming the data

• the activation levels are propagated starting at the input
layer through the hidden layers to the output layer

• the activation level of the neurons in the output layer is
fed to the environment

• at least on hidden layer is necessary to be able to use the
net as a universal approximator

Discriminant analysis tries to find a linear subspace of the
given patterns such that projections of the patterns onto the
subspace are grouped into well separated clusters. In our
case, balance sheet ratios are used to assign companies into
two clusters, one of sound and one for insolvent companies.

The relationships between statistical discriminant analysis
and multilayered perceptrons (MLPs) shows the evidence

of generic properties of MLPs classifiers [GTBFS91]. In
other words, linear MLPs can be trained to perform mean
square classification to discriminant analysis. The authors
of the cited paper [GTBFS91] first concentrate on linear
MLPs with one hidden layer. Such networks have two
weight matrices W1 for the weights from the input-to-
hidden and W2 for the weights from the hidden-to-output
layers. These two weight matrices are adapted by the
backpropagation learning algorithm. If this algorithm
minimizes the error between desired and network output
vectors, the first layer of the MLP performs discriminant
analysis projection using the weights from input-to-hidden
W1 and the second layer performs a classification on the
output of the hidden units using the weights from hidden-to-
output layers.

In this application neural nets perform statistical analysis
of data. Therefore they require a large set of data to yield
optimal estimation of the parameters. This also implies that

the number of given patterns is larger than the dimension of
the space in which they sit. Each cluster should be
described by enough patterns belonging to that cluster.

Implementation

The heart of your forecasting system is a "multilayer
feedforward network", also known as "multilayered
perceptron" or "feed forward networks" trained with the
"generalized delta rule", also known as "backpropagation"
[RHW86]. For a detailed description of this type of network
see [HKP91] and [Nil90] and their APL implementation see
[KR94], [Alf91], [ES91], [Pee81] and [SS93]. It was fist
implemented using Dyalog APL version 6.1 release 3 on
HP9000/700 workstations [Dya91]. The code implementing
the graphical user interface (GUI) was then ported to
Dyalog APL Version 7.0 release 1 for MS-Windows on
IBM compatible PCs [Dya94].

The system consists of the following components:

• The runtime version of the APL interpreter. With this
APL dialect the vendor allows distribution of the
runtime interpreter version free of charge.

• The APL ANN workspace implements the classification
system. The functions in the workspace are grouped into
the following namespaces:

• Functions that create graphical objects like a
window showing the multilayered perceptron
network (see Figure 1). Often other than
default properties are specified in GUI
functions. Properties define an object's

Figure 1: User interface of the simulator

behavior, appearance and events that the object
can generate. For each object able to generate
events, a "callback function" can be assigned
that is called when the corresponding event
occurs. Events are very important for an
application with a graphical front-end because
they define how the objects react to the user.
As an example, we show the APL code that
allows the user to move the processing devices
within the window.

• Functions for component file input and output.
Because the execution time of such simulations
is very high, logging facilities of the
application must be provided. The application
takes extensively advantage of nested vectors
and matrices. With the component filesystem,
APL variables can be created/appended
directly to the hard disk.

• The last but not least part is the APL artificial
neural network-code as described in [KR94].
The code consists of three individual parts:
During network training, a main loop is used to
present many input patterns to the artificial
neural network. Within the loop there is a
function that reads in and transforms the
training data. The "FORWARD" function
propagates the input pattern through the hidden
layer(s) to the output layer. After the output
value of the net is known, an error is calculated
and the weight change is propagated
backwards through the hidden layers to the
input layer using the "BACKWARD" function.

The system is generally controlled via the graphical
frontend because there is no session manager in the runtime
version of the interpreter available.

Figure 1 shows the window of the "Multiple-Document
Interface (MDI)" application. The MDI window consists of
a menu bar and a tool bar at the top and a status field at the
bottom. Within the main window, there are windows for
general control of the system and for displaying details of
the artificial neural network. The backprop view shows the
activation level of the neurons (circles) and the weight
values (lines). The window dump shows a net with 5 input,
3 hidden units and 1 output unit (5-3-1). A big filled circle
indicates that the neuron fires and a transparent circle
indicates (almost) no output of the neuron. The size of the
circle is proportional to the output of a neuron. The lines
connecting to each neuron from the previous layer are the
graphical representation of the weight values. These can be
negative or positive real numbers, which are encoded in two
different colors. Again, a thick line represents a weight with
a high negative or positive value.

Modeling

The Training Data

In order to indicate more practical relevance, we decided to
use real data. First, we studied the insolvency statistics of
the year 1993 [Hie93]:

• total amount of insolvencies: 5,082 (+38 %)

• total amount of obligations: US$ 2.9 Billion

• 17,000 employees evolved

In 1994, the "Atomic" company, one of the world's biggest
producer of skiis became insolvent. Until now, the year
1994 seems to be another bad year of many insolvencies.

If we split up the total number of insolvencies according
to types of company, we get the following statistics
[Hie93]:

Table 1: Which company types have a high risk to
become insolvent?

Another important information is the membership of an
individual company in the branch of industry. If we
consider the branch of industry, the classification capability
will probably be better. The metal-processing, paper,
building and construction and the textile industry are the
most jeopardized area of business in Austria.

After studying the possible sources of data about
insolvent and sound companies, we decided to only survey
private limited companies with a minimum turnover of
US$ 30,000. Firstly private limited companies tend to
become more often insolvent than other company types.
Secondly private limited companies with more than ATS 1
Million common share or more than 300 employees have to
publish their balance sheet.

What relationships between balance sheet items should
be calculated to best describe the financial position of a
business firm?

We decided to calculate the following five financial
ratios to train our artificial neural network[Ble85]:

1. cash flow / liabilities

2. quick (current) assets / current liabilities

3. quick (current) assets / total assets

4. liabilities / total assets

5. profit or loss / total assets

type of company percentage of total
sole trader/partnership 33.87
unlimited companies 1.32
private limited companies 50.66
public limited companies 0.44
other 13.71

As test bed for our simulations we used 82 balance sheets,
59 of sound and 23 of insolvent companies. In order to
average statistical outliers, we tried to get balance sheets of
three successive years from each business firm. The 82
balance sheets were grouped in 62 training- and 20 test
patterns.1

The following figures show the distribution of the
parameters:

1 Data is available from http://godefroy.sdf-
eu.org/apl95/ratios95.zip

0
1
2
3
4
5
6
7
8

-0
.2

6

-0
.1

8

-0
.1

1

-0
.0

4

0.
03

0.
11

0.
18

0.
25

0.
32

0.
39

0.
47

0.
54

0.
61

0.
68

cash flow / liabilities

nu
m

be
r o

f c
om

pa
ni

es sound
insolvent

Figure 2: Distribution of balance sheet ratio cash flow /
liabilities

0

2

4

6

8

10

12

0.
32

0.
62

0.
92

1.
22

1.
52

1.
82

2.
12

2.
42

2.
72

3.
02

3.
32

3.
62

3.
92

4.
22

quick (current) assets / current liabilities

nu
m

be
r o

f c
om

pa
ni

es sound
insolvent

Figure 3: Distribution of balance sheet ratio quick
(current) assets / current liabilities

0

1

2

3

4

5

6

0.
22

0.
29

0.
36

0.
43

0.
50

0.
57

0.
64

0.
72

0.
79

0.
86

0.
93

1.
00

quick (current) assets / total assets

nu
m

be
r o

f c
om

pa
ni

es

sound
insolvent

Figure 4: Distribution of balance sheet ratio quick
(current) assets / total assets

0

1

2

3

4

5

6

0.
20

0.
26

0.
32

0.
38

0.
43

0.
49

0.
55

0.
61

0.
67

0.
72

0.
78

0.
84

0.
90

0.
95

liabilities / total assets

nu
m

be
r o

f c
om

pa
ni

es sound
insolvent

Figure 5: Distribution of balance sheet ratio liabilities /
total assets

0

2

4

6

8

10

12

-0
.2

8

-0
.2

4

-0
.1

9

-0
.1

4

-0
.1

0

-0
.0

5

0.
00

0.
04

0.
09

0.
14

0.
18

profit or loss / total assets

nu
m

be
r o

f c
om

pa
ni

es sound
insolvent

Figure 6: Distribution of balance sheet ratio profit or
loss / total assets

The Algorithm

During the learning phase a randomly selected input/output
pair is presented to the network. The input/output data is
transformed into a range that the ANN can process. The
output values are set to 1 for insolvent companies and to 0
for all others. The simulation environment helps the
researcher to find a well performing network. Typically a
session is divided into the following steps:
• Select a file for saving the network status in the file box

menu
• Load the training data with the input/output pattern

selection menu
• Set the network parameters (learning rate, momentum

term, output function, maximum number of iterations) in
the control menu

• Start learning
• Load test patterns and test the network

We have conducted many experiments to find the size of a
well performing network. Table 2 and Figure 7 show the
results of different network topologies in the test data
sample after 5,000 learning iterations, using a learning rate
of 0.3 and a momentum of 0.8.

Because the network output has values between 0 and 1,
we have to introduce a threshold to assign a company to the
insolvent or sound cluster. For a threshold of 0.5, the 5-3-1
and 5-5-1 networks have the best performance with one
wrong classification of an insolvent company (number 18).

We have chosen the smaller network for closer
inspection.

cash flow /
liabilities

profit /
total assets

liabilities /
total assets

quick assets /
liabilities

quick assets /
assets

Figure 8: Graphical view of the found 5-3-1 network

The weight matrix between input (L0) and hidden (L1)
layer is given in Table 3:

actual output
number desired 5-1 5-1-1 5-2-1 5-3-1 5-4-1 5-5-1

1 0 0.134 0.059 0.013 0.022 0.002 0.022
2 0 0.234 0.102 0.039 0.096 0.022 0.097
3 0 0.106 0.047 0.008 0.011 -0.001 0.011
4 0 0.020 0.018 -0.001 -0.004 -0.006 -0.004
5 0 0.007 0.013 -0.002 -0.005 -0.006 -0.006
6 0 0.163 0.078 0.020 0.035 0.007 0.035
7 0 0.162 0.071 0.019 0.037 0.007 0.037
8 0 0.114 0.048 0.009 0.015 0.000 0.014
9 0 0.076 0.039 0.005 0.004 -0.003 0.003
10 0 0.399 0.225 0.197 0.452 0.174 0.452
11 0 0.041 0.024 0.000 -0.002 -0.005 -0.003
12 0 0.227 0.102 0.039 0.091 0.022 0.092
13 0 0.093 0.041 0.006 0.008 -0.002 0.007
14 0 0.198 0.091 0.034 0.072 0.018 0.073
15 1 0.450 0.266 0.287 0.593 0.268 0.593
16 1 0.456 0.272 0.297 0.608 0.280 0.608
17 1 0.575 0.405 0.575 0.840 0.585 0.842
18 1 0.411 0.239 0.220 0.484 0.198 0.484
19 1 0.520 0.349 0.421 0.727 0.419 0.728
20 1 0.428 0.251 0.261 0.551 0.244 0.551

Table 2: Results for various network topologies

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

desired
5-1
5-1-1
5-2-1
5-3-1
5-4-1
5-5-1

number of company in test data

ac
tu

al
 o

ut
pu

t

Figure 7: The performance of different network topologies

L0N0 L0N1 L0N2 L0N3 L0N4 L0N5
L1N1 -1.23 -0.86 0.40 1.47 -1.12 0.99
L1N2 -1.42 -4.47 -3.78 12.04 -3.96 7.43
L1N3 0.61 2.01 2.47 -6.09 1.47 -3.85
Table 3: Weight matrix between input and
hidden layer

The weight vector between hidden (L1) and output (L2)
layer is shown in Table 4:

The Data was transformed with linear functions (see Table
5).

One neuron in the hidden layer is a detector for a sound and
another for an insolvent company. The third neuron has a
very small impact on the final result because of small
weight values.

A company seems to be in danger when the ratio
liabilities / total assets or quick assets / assets has a high
positive value. On the other side, sound companies have
small liabilities / total assets and quick assets / assets ratios.

Dyalog APL GUI Code

In this paper we want to present a piece of code, that
implements the graphical user interface (GUI). The
following functions implement the neuron (circles in figure)
movable functionality. This enables the user to reposition
the processing devices in the "backprop view" window. The
circle is redrawn by APL itself. Only the weights (lines)
connected to the neuron needs to repositioned. This is done
with the function MOVE.

MAIN
MAINMAINMAINMAIN;MR;MW;FNAME;FN

[1] MR¢5 ë Max Radius of circle
[2] MW¢10 ë Max With of line
[3]ë global variables in namespace #.ANN
[4] #.ANN.RW¢å10 10 ë range of weights

(min/max)
[5] #.ANN.TO¢5 2 1 ë TOpology
[6] #.ANN.W¢(2 6ã0.5)(1 3ã0.5) ë Weights

(demo values)
[7] FN¢(FNAME¢ß#.Formß),ß.Subformß

[8] FNAME !WCßFormß

[9] DRAWFORMDRAWFORMDRAWFORMDRAWFORM

DRAWFORM
DRAWFORMDRAWFORMDRAWFORMDRAWFORM;PO;MA;MU;TI;XFI;YLO;YFI;
XLI;XST;YST

[1] ë called from MAIN

[2] PO¢(0 0)(100 100) ë POsition and
size of subform in %

[3] MA¢10 10 10 10 ë top bottom left
right MArgin %

[4] MU¢ô/(1+å1¡#.ANN.TO),å1†#.ANN.TO ë
Maximum Units in one layer

[5] TI¢ßBackprop Viewß ë TItle
[6] YLO XFI¢MA[1 3]+MR ë X-coordinate of

the First circle Input layer XFI; Y-
coordinate of the Last circle in the
Output layer YLO

[7] XLI YFI¢100-(MA[4 2]+MR) ë X and Y-
coordinate for the First and Last
circle Input layer XLI YFI

[8] XST¢(XLI-XFI)ö(1ô(MU-1)) ë draw a
circle every X STep units

[9] YST¢(YLO-YFI)ö(1ôå1+ã#.ANN.TO) ë
draw a layer every Y STep units

[10] FN !WCßSubformßTI,(PO),(°ßEventß
1001 1) ë create a form

[11] FN !WS(ßEventß ßDragDropß ßMOVEß) ë
report an event when an object is
moved in the subform

[12] ((XLI-XFI)ö1†#.ANN.TO) DRAWINPUT DRAWINPUT DRAWINPUT DRAWINPUT
ý0,â1†#.ANN.TO ë draw input layer

[13] DRAWOTHERDRAWOTHERDRAWOTHERDRAWOTHERýâã#.ANN.W ë draw all
other layers

DRAWINPUT
STEP DRAWINPUT L2

[1]ë called from DRAWFORM
[2] (FN,ß.C_L0_Nß,©L2) !WC ßCircleß

(YFI,(XFI+STEPäL2))MR(ßDragableß 1)

DRAWOTHER
DRAWOTHERDRAWOTHERDRAWOTHERDRAWOTHER L1;XTO;XFR

[1] ë called from DRAWFORM
[2] ¨(L1÷ã#.ANN.W)/ß(FN,ßß.C_Lßß,

(©L1),ßß_N0ßß) !WC
ßßCircleßß((YFI+YSTäL1),XFI)MR
(ßßDragableßß 2)ß ë DRAW BIAS

[3] XFR XTO¢(XLI-XFI)ö#.ANN.TO[L1+å1+â2]

[4] DRAWNEURONDRAWNEURONDRAWNEURONDRAWNEURONýâ#.ANN.TO[1+L1]

DRAWNEURON
DRAWNEURON L11

[1] ë called from DRAWOTHER
[2] (FN,ß.C_Lß,(©L1),ß_Nß,©L11) !WC

ßCircleß((YFI+YSTäL1),
(XFI+XTOäL11))MR(ßDragableß 1)

[3] DRAWWEIGHTDRAWWEIGHTDRAWWEIGHTDRAWWEIGHTý0,â#.ANN.TO[L1]

DRAWWEIGHT
DRAWWEIGHTDRAWWEIGHTDRAWWEIGHTDRAWWEIGHT L111;CO;WI;X;V;RGB

[1] ë called from DRAWNEURON

L1N0 L1N1 L1N2 L1N3
L2N1 -2.97 1.38 11.14 -5.94
Table 4: Weight vector between
hidden and output layer

input data output data
min max min max

prior transf. -0.29 2.65 prior transf. 0 1
after transf. -0.5 0.5 after transf. 0.007 0.993
Table 5: Minimum and maximum values of original and
transformed data

[2] CO¢((YFI+YSTäL1),(YFI+YSTä(0ôL1-
1)))((XFI+XTOäL11),(XFI+XFRäL111)) ë
y: start/end and x: start/end

[3] WI¢(L1±#.ANN.W)[L11;L111+1] ë weight
value

[4] RGB¢255õ0ô(V¢õ255äX¢(|WI)ö
#.ANN.RW[2])0 0 ë weight ò0 color
red

[5] ¨(WI<0)/ßRGB¢255õ0ô0 0 Vß ë weight
<0 blue

[6] (FN,ß.W_Lß,(©L1),ß_Tß,(©L11),ß_Fß,
(©L111)) !WC ßPolyßCO(ßFCOLßRGB)
(ßLWidthß(õMWäX))

MOVE
MOVEMOVEMOVEMOVE MSG;P;F;PO;L;N

[1] P F¢MSG[1 3] ë P...parent object,
F...current object

[2] PO¢2†3¡MSG ë current position of
object

[3] L¢¨ß_LßNUM F ë layer
[4] N¢¨ß_NßNUM F ë neuron in layer
[5] ë redraw weights connecting to the

NEXT layer
[6] ¨(L<(å1+ã#.ANN.TO))/ß1 CWý

â#.ANN.TO[L+2]ß

[7] ë redraw weights connecting to the
PREVIOUS layer

[8] ¨((N>0)^(L>0))/ß0 CWý0,â#.ANN.TO[L]ß

CW
FT CWCWCWCW T;O;OP;RA

[1]ë Change Weights (CW)
[2]ë FTð0 for lines connecting to the

input of the neuron
[3]ë FTð1 for lines going the next

layer
[4] O¢P,ß.W_Lß,(©L+FT),,†((ß_Tß)

(ß_Fß),ýFTè(©N)(©T)) ë create
object's name

[5] RA¢(P,ß.C_Lß,(©L),ß_Nß,(©N)) !WG
ßRadiusß ë get RAdius of object

[6] OP¢†O !WGßPointsß ë get old position
of object

[7] OP[;1+FT]¢PO+RA ë calculate new
position; PO is global (MOVE)

[8] O !WSßPointsß(¡OP) ë set new
position of line

NUM
Z¢P NUMNUMNUMNUM T;A

[1]ë find number of neuron out of the
object's name

[2] Z¢(~ì\~Aîß0123456789ß)/A¢
(ãP)¡(ì\(PÞT))/T

Conclusion

In this paper we have presented an APL tool for early
detection of company failures using neural networks. This
computing devices proved themselves to be a viable
alternative to discriminant analysis.

With this workspace we were able to find networks for
detection of company failures. Graphical visualization helps
understanding complex relations that exist in neural nets.

Further work will include the improvement of the APL
product and a detailed documentation of the user interface.

References

[Alf91] M. Alfonseca. Advanced applications of APL:
logic programming, neural networks and hypertext. IBM
Systems Journal, 30(4):543-553, 1991.

[Ble85] Ernst Bleier. Insolvenzfrüherkennung mittels
praktischer Anwendung der Diskriminanzanalyse. Service
Fachverlag an der Wirtschaftsuniversität Wien, Augasse 2-
6, 1090 Vienna, Austria, 1985.

[Dya91] Dyadic Systems Limited, Riverside View, Basing
Road, Old Basing, Basingstoke, Hampshire RG24 0AL,
England. Dyalog Apl Users Guide for version 6.1, 1991.

[Dya94] Dyadic Systems Limited, Riverside View, Basing
Road, Old Basing, Basingstoke, Hampshire RG24 0AL,
England. Dyalog Apl User Guide, Language Reference,
Windows Interface and Outer Products for Version 7.0,
1994.

[ES91] Richard M. Evans and Alvin J. Surkan. Relating
Numbers of Processing Elements in a Sparse Distributed
Memory Model to Learning Rate and Generalization. ACM
APL Quote Quad, 21(4):166-173, 1991.

[GTBFS91] P. Gallinari, S. Thiria, F. Badran, and F.
Folgelman-Soulie. On the Relations Between Discriminant
Analysis and Multilayer Perceptrons. Neural Networks,
4:349-360, 1991.

[Hie93] Klaus Hierzenberger. Bericht zur Insovenzstatistik
1993. Kreditschutzverband von 1870, 1993.

 [HKP91] John Hertz, Anders Krogh, and Richard G.
Palmer. Introduction to the Theory od Neural Computation.
Addison Wesley, Redwood City, California, 1991.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert
White. Multilayer Feedforward Networks are Universal
Approximators. Neural Networks, 2:359-366, 1989.

[KR94] Thomas Kolarik and Gottfried Rudorfer. Time
Series Forecasting Using Neural Networks. ACM APL
Quote Quad, 25(1):86-94, 1994.

[Nil90] Nils J. Nilsson. The Mathematical Foundations of
Learning Machines. Morgan Kaufmann Publishers Inc., San
Mateo, 1990.

[Pee81] Howard A. Peele. Teaching A Topic in
Cybernetics with APL: An Introduction to Neural Net
Modelling. ACM APL Quote Quad, 12(1):235-239, 1981.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and
Ronald J. Williams. Learning representations by
backpropagating errors. Nature, 323(9):533-536, October
1986.

[RW94] Gottfried Rudorfer and Harald Wenisch.
Isolvenzprognose mit Künstlichen Neuronalen Netzen.
University of Economics and Business Administration,
Augasse 2-6, 1090 Wienna, Austria, 1994.

[SS93] Alexei N. Skurihin and Alvin J. Surkan.
Identification of Parallelism in Neural Networks by
Simulation with Language J. ACM APL Quote Quad,
24(1):230-237, 1993.

[TK90] Kar Yan Tam and Melody Kiang. Predicting Bank
Failures: A Neural Network Approach. Applied Artificial
Intelligence, 4:265-282, 1990.

	Abstract
	Motivation
	Implementation
	Modeling
	The Training Data
	The Algorithm
	Dyalog APL GUI Code
	MAIN
	DRAWFORM
	DRAWINPUT
	DRAWOTHER
	DRAWNEURON
	DRAWWEIGHT
	MOVE
	CW
	NUM

	Conclusion
	References

