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Abstract 

In 1993, Austria had the highest number of bankruptcies 
since 1945. The total liabilities came to approx. 
US$ 3 Billion. 

Powerful tools for early detection of company risks are 
very important to avoid high economic losses. Artificial 
neural networks(ANN) are suitable for many tasks in 
pattern recognition and machine learning. In this paper we 
present an ANN for early detection of company failures 
using balance sheet ratios. The network has been 
successfully tested with real data of Austrian private limited 
companies. The research activities included the design of an 
APL application with a graphical user interface to find out 
the relevant input data and tune the ANN.  

The developed APL workspace takes advantage of 
modern windowing features running on IBM compatible 
computers. 

Keywords  Artificial Neural Networks, Backpropagation, 
Discriminant Analysis, Bankruptcy, Balance Sheet Ratios, 
APL. 

Motivation 

Neural nets are currently being used to solve problems in 
many different research areas. Generally, they tend to assist 
or become an alternate way for traditional statistical and 
mathematical models. 

Their main practical applications in economics have 
been for time series forecasting (i.e. [KR94]) and 
classification tasks (i.e. [TK90]). 

Banks usually check the creditworthiness of companies 
to find the maximum amount of credit they are prepared to 
grant. The models used are formulated as a classification 
problem in a multidimensional space defined by a set of 

financial ratios calculated using the balance sheet. 
In this paper we try to use neural networks as 

replacement for the widely used statistical discriminant 
analysis to early detect company failures. With this 
approach we bypass the disadvantages and problems with 
statistical discriminant analysis: 

The major problem with statistical discriminant analysis 
is the assumption of a multivariate normal distribution of 
the sample data. This assumption is very often violated in 
practical problems. 

We use multilayer feedforward networks also known as 
multilayered perceptrons (MLPs), because they are a class 
of universal approximators. 

There exists a formal proof that "standard multilayer 
feedforward networks with as few as one hidden layer using 
arbitrary squashing functions are capable of approximating 
any Borel measurable function from one finite dimensional 
space to another to any desired accuracy, provided 
sufficiently many hidden units are available". [HSW89]. 

The networks under investigation have the following 
properties: 

• the net consists of many simple processing devices 
grouped into layers 

• one input/output pair is randomly selected and passed to 
the artificial neural network after transforming the data 

• the activation levels are propagated starting at the input 
layer through the hidden layers to the output layer 

• the activation level of the neurons in the output layer is 
fed to the environment 

• at least on hidden layer is necessary to be able to use the 
net as a universal approximator 

Discriminant analysis tries to find a linear subspace of the 
given patterns such that projections of the patterns onto the 
subspace are grouped into well separated clusters. In our 
case, balance sheet ratios are used to assign companies into 
two clusters, one of sound and one for insolvent companies. 

The relationships between statistical discriminant analysis 
and multilayered perceptrons (MLPs) shows the evidence 

 



of generic properties of MLPs classifiers [GTBFS91]. In 
other words, linear MLPs can be trained to perform mean 
square classification to discriminant analysis. The authors 
of the cited paper [GTBFS91] first concentrate on linear 
MLPs with one hidden layer. Such networks have two 
weight matrices W1 for the weights from the input-to-
hidden and W2 for the weights from the hidden-to-output 
layers. These two weight matrices are adapted by the 
backpropagation learning algorithm. If this algorithm 
minimizes the error between desired and network output 
vectors, the first layer of the MLP performs discriminant 
analysis projection using the weights from input-to-hidden 
W1 and the second layer performs a classification on the 
output of the hidden units using the weights from hidden-to-
output layers. 

In this application neural nets perform statistical analysis 
of data. Therefore they require a large set of data to yield 
optimal estimation of the parameters. This also implies that 

the number of given patterns is larger than the dimension of 
the space in which they sit. Each cluster should be 
described by enough patterns belonging to that cluster. 

Implementation 

The heart of your forecasting system is a "multilayer 
feedforward network", also known as "multilayered 
perceptron" or "feed forward networks" trained with the 
"generalized delta rule", also known as "backpropagation" 
[RHW86]. For a detailed description of this type of network 
see [HKP91] and [Nil90] and their APL implementation see 
[KR94], [Alf91], [ES91], [Pee81] and [SS93]. It was fist 
implemented using Dyalog APL version 6.1 release 3 on 
HP9000/700 workstations [Dya91]. The code implementing 
the graphical user interface (GUI) was then ported to 
Dyalog APL Version 7.0 release 1 for MS-Windows on 
IBM compatible PCs [Dya94]. 

 

 

The system consists of the following components: 

• The runtime version of the APL interpreter. With this 
APL dialect the vendor allows distribution of the 
runtime interpreter version free of charge. 

• The APL ANN workspace implements the classification 
system. The functions in the workspace are grouped into 
the following namespaces: 

• Functions that create graphical objects like a 
window showing the multilayered perceptron 
network (see Figure 1). Often other than 
default properties are specified in GUI 
functions. Properties define an object's 

 
Figure 1: User interface of the simulator 



behavior, appearance and events that the object 
can generate. For each object able to generate 
events, a "callback function" can be assigned 
that is called when the corresponding event 
occurs. Events are very important for an 
application with a graphical front-end because 
they define how the objects react to the user. 
As an example, we show the APL code that 
allows the user to move the processing devices 
within the window. 

• Functions for component file input and output. 
Because the execution time of such simulations 
is very high, logging facilities of the 
application must be provided. The application 
takes extensively advantage of nested vectors 
and matrices. With the component filesystem, 
APL variables can be created/appended 
directly to the hard disk. 

• The last but not least part is the APL artificial 
neural network-code as described in [KR94]. 
The code consists of three individual parts: 
During network training, a main loop is used to 
present many input patterns to the artificial 
neural network. Within the loop there is a 
function that reads in and transforms the 
training data. The "FORWARD" function 
propagates the input pattern through the hidden 
layer(s) to the output layer. After the output 
value of the net is known, an error is calculated 
and the weight change is propagated 
backwards through the hidden layers to the 
input layer using the "BACKWARD" function. 

The system is generally controlled via the graphical 
frontend because there is no session manager in the runtime 
version of the interpreter available. 

Figure 1 shows the window of the "Multiple-Document 
Interface (MDI)" application. The MDI window consists of 
a menu bar and a tool bar at the top and a status field at the 
bottom. Within the main window, there are windows for 
general control of the system and for displaying details of 
the artificial neural network. The backprop view shows the 
activation level of the neurons (circles) and the weight 
values (lines). The window dump shows a net with 5 input, 
3 hidden units and 1 output unit (5-3-1). A big filled circle 
indicates that the neuron fires and a transparent circle 
indicates (almost) no output of the neuron. The size of the 
circle is proportional to the output of a neuron. The lines 
connecting to each neuron from the previous layer are the 
graphical representation of the weight values. These can be 
negative or positive real numbers, which are encoded in two 
different colors. Again, a thick line represents a weight with 
a high negative or positive value. 

Modeling 

The Training Data 

In order to indicate more practical relevance, we decided to 
use real data. First, we studied the insolvency statistics of 
the year 1993 [Hie93]: 

• total amount of insolvencies: 5,082 (+38 %) 

• total amount of obligations: US$ 2.9 Billion 

• 17,000 employees evolved 

In 1994, the "Atomic" company, one of the world's biggest 
producer of skiis became insolvent. Until now, the year 
1994 seems to be another bad year of many insolvencies. 

If we split up the total number of insolvencies according 
to types of company, we get the following statistics 
[Hie93]: 

Table 1: Which company types have a high risk to 
become insolvent? 

Another important information is the membership of an 
individual company in the branch of industry. If we 
consider the branch of industry, the classification capability 
will probably be better. The metal-processing, paper, 
building and construction and the textile industry are the 
most jeopardized area of business in Austria. 

After studying the possible sources of data about 
insolvent and sound companies, we decided to only survey 
private limited companies with a minimum turnover of 
US$ 30,000. Firstly private limited companies tend to 
become more often insolvent than other company types. 
Secondly private limited companies with more than ATS 1 
Million common share or more than 300 employees have to 
publish their balance sheet. 

What relationships between balance sheet items should 
be calculated to best describe the financial position of a 
business firm? 

We decided to calculate the following five financial 
ratios to train our artificial neural network[Ble85]: 

1. cash flow / liabilities 

2. quick (current) assets / current liabilities 

3. quick (current) assets / total assets 

4. liabilities / total assets 

5. profit or loss / total assets 

type of company percentage of total 
sole trader/partnership 33.87 
unlimited companies 1.32 
private limited companies 50.66 
public limited companies 0.44 
other 13.71 



As test bed for our simulations we used 82 balance sheets, 
59 of sound and 23 of insolvent companies. In order to 
average statistical outliers, we tried to get balance sheets of 
three successive years from each business firm. The 82 
balance sheets were grouped in 62 training- and 20 test 
patterns.1 

The following figures show the distribution of the 
parameters: 

 

 

                                                           
1 Data is available from http://godefroy.sdf-
eu.org/apl95/ratios95.zip   
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Figure 2: Distribution of balance sheet ratio cash flow / 
liabilities 
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Figure 3: Distribution of balance sheet ratio quick 
(current) assets / current liabilities 
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Figure 4: Distribution of balance sheet ratio quick 
(current) assets / total assets 

0

1

2

3

4

5

6

0.
20

0.
26

0.
32

0.
38

0.
43

0.
49

0.
55

0.
61

0.
67

0.
72

0.
78

0.
84

0.
90

0.
95

liabilities  / total assets

nu
m

be
r o

f c
om

pa
ni

es sound
insolvent

 
Figure 5: Distribution of balance sheet ratio liabilities / 
total assets 
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Figure 6: Distribution of balance sheet ratio profit or 
loss / total assets 



The Algorithm 

During the learning phase a randomly selected input/output 
pair is presented to the network. The input/output data is 
transformed into a range that the ANN can process. The 
output values are set to 1 for insolvent companies and to 0 
for all others. The simulation environment helps the 
researcher to find a well performing network. Typically a 
session is divided into the following steps: 
• Select a file for saving the network status in the file box 

menu 
• Load the training data with the input/output pattern 

selection menu 
• Set the network parameters (learning rate, momentum 

term, output function, maximum number of iterations) in 
the control menu 

• Start learning 
• Load test patterns and test the network 

We have conducted many experiments to find the size of a 
well performing network. Table 2 and Figure 7 show the 
results of different network topologies in the test data 
sample after 5,000 learning iterations, using a learning rate 
of 0.3 and a momentum of 0.8. 

 

Because the network output has values between 0 and 1, 
we have to introduce a threshold to assign a company to the 
insolvent or sound cluster. For a threshold of 0.5, the 5-3-1 
and 5-5-1 networks have the best performance with one 
wrong classification of an insolvent company (number 18). 

We have chosen the smaller network for closer 
inspection. 

cash flow /
liabilities

profit /
total assets

liabilities /
total assets

quick assets /
liabilities

quick assets /
assets

 
Figure 8: Graphical view of the found 5-3-1 network 

The weight matrix between input (L0) and hidden (L1) 
layer is given in Table 3: 

actual output
number desired 5-1 5-1-1 5-2-1 5-3-1 5-4-1 5-5-1

1 0 0.134 0.059 0.013 0.022 0.002 0.022
2 0 0.234 0.102 0.039 0.096 0.022 0.097
3 0 0.106 0.047 0.008 0.011 -0.001 0.011
4 0 0.020 0.018 -0.001 -0.004 -0.006 -0.004
5 0 0.007 0.013 -0.002 -0.005 -0.006 -0.006
6 0 0.163 0.078 0.020 0.035 0.007 0.035
7 0 0.162 0.071 0.019 0.037 0.007 0.037
8 0 0.114 0.048 0.009 0.015 0.000 0.014
9 0 0.076 0.039 0.005 0.004 -0.003 0.003
10 0 0.399 0.225 0.197 0.452 0.174 0.452
11 0 0.041 0.024 0.000 -0.002 -0.005 -0.003
12 0 0.227 0.102 0.039 0.091 0.022 0.092
13 0 0.093 0.041 0.006 0.008 -0.002 0.007
14 0 0.198 0.091 0.034 0.072 0.018 0.073
15 1 0.450 0.266 0.287 0.593 0.268 0.593
16 1 0.456 0.272 0.297 0.608 0.280 0.608
17 1 0.575 0.405 0.575 0.840 0.585 0.842
18 1 0.411 0.239 0.220 0.484 0.198 0.484
19 1 0.520 0.349 0.421 0.727 0.419 0.728
20 1 0.428 0.251 0.261 0.551 0.244 0.551

Table 2: Results for various network topologies 
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Figure 7: The performance of different network topologies 

L0N0 L0N1 L0N2 L0N3 L0N4 L0N5
L1N1 -1.23 -0.86 0.40 1.47 -1.12 0.99
L1N2 -1.42 -4.47 -3.78 12.04 -3.96 7.43
L1N3 0.61 2.01 2.47 -6.09 1.47 -3.85  
Table 3: Weight matrix between input and 
hidden layer 



The weight vector between hidden (L1) and output (L2) 
layer is shown in Table 4: 

The Data was transformed with linear functions (see Table 
5). 

One neuron in the hidden layer is a detector for a sound and 
another for an insolvent company. The third neuron has a 
very small impact on the final result because of small 
weight values. 

A company seems to be in danger when the ratio 
liabilities / total assets or quick assets / assets has a high 
positive value. On the other side, sound companies have 
small liabilities / total assets and quick assets / assets ratios. 

Dyalog APL GUI Code 

In this paper we want to present a piece of code, that 
implements the graphical user interface (GUI). The 
following functions implement the neuron (circles in figure) 
movable functionality. This enables the user to reposition 
the processing devices in the "backprop view" window. The 
circle is redrawn by APL itself. Only the weights (lines) 
connected to the neuron needs to repositioned. This is done 
with the function MOVE. 

MAIN 
MAINMAINMAINMAIN;MR;MW;FNAME;FN 

[1] MR¢5 ë Max Radius of circle 
[2] MW¢10  ë Max With of line 
[3]ë global variables in namespace #.ANN 
[4] #.ANN.RW¢å10 10 ë range of weights 

(min/max) 
[5] #.ANN.TO¢5 2 1 ë TOpology 
[6] #.ANN.W¢(2 6ã0.5)(1 3ã0.5) ë Weights 

(demo values) 
[7] FN¢(FNAME¢ß#.Formß),ß.Subformß 

[8] FNAME !WCßFormß 

[9] DRAWFORMDRAWFORMDRAWFORMDRAWFORM 

DRAWFORM 
DRAWFORMDRAWFORMDRAWFORMDRAWFORM;PO;MA;MU;TI;XFI;YLO;YFI; 
XLI;XST;YST 

[1] ë called from MAIN 

[2] PO¢(0 0)(100 100) ë POsition and 
size of subform in % 

[3] MA¢10 10 10 10 ë top bottom left 
right MArgin % 

[4] MU¢ô/(1+å1¡#.ANN.TO),å1†#.ANN.TO ë 
Maximum Units in one layer 

[5] TI¢ßBackprop Viewß ë TItle 
[6] YLO XFI¢MA[1 3]+MR ë X-coordinate of 

the First circle Input layer XFI; Y-
coordinate of the Last circle in the 
Output layer YLO 

[7] XLI YFI¢100-(MA[4 2]+MR) ë X and Y-
coordinate for the First and Last 
circle Input layer XLI YFI 

[8] XST¢(XLI-XFI)ö(1ô(MU-1)) ë draw a 
circle every X STep units 

[9] YST¢(YLO-YFI)ö(1ôå1+ã#.ANN.TO) ë 
draw a layer every Y STep units 

[10] FN !WCßSubformßTI,(PO),(°ßEventß 
1001 1) ë create a form 

[11] FN !WS(ßEventß ßDragDropß ßMOVEß) ë 
report an event when an object is 
moved in the subform 

[12] ((XLI-XFI)ö1†#.ANN.TO) DRAWINPUT DRAWINPUT DRAWINPUT DRAWINPUT 
ý0,â1†#.ANN.TO ë draw input layer 

[13] DRAWOTHERDRAWOTHERDRAWOTHERDRAWOTHERýâã#.ANN.W ë draw all 
other layers 

DRAWINPUT 
STEP DRAWINPUT L2 

[1]ë called from DRAWFORM 
[2] (FN,ß.C_L0_Nß,©L2) !WC ßCircleß 

(YFI,(XFI+STEPäL2))MR(ßDragableß 1) 

DRAWOTHER 
DRAWOTHERDRAWOTHERDRAWOTHERDRAWOTHER L1;XTO;XFR 

[1] ë called from DRAWFORM 
[2] ¨(L1÷ã#.ANN.W)/ß(FN,ßß.C_Lßß, 

(©L1),ßß_N0ßß) !WC 
ßßCircleßß((YFI+YSTäL1),XFI)MR 
(ßßDragableßß 2)ß ë DRAW BIAS 

[3] XFR XTO¢(XLI-XFI)ö#.ANN.TO[L1+å1+â2] 

[4] DRAWNEURONDRAWNEURONDRAWNEURONDRAWNEURONýâ#.ANN.TO[1+L1] 

DRAWNEURON 
DRAWNEURON L11 

[1] ë called from DRAWOTHER 
[2] (FN,ß.C_Lß,(©L1),ß_Nß,©L11) !WC 

ßCircleß((YFI+YSTäL1), 
(XFI+XTOäL11))MR(ßDragableß 1) 

[3] DRAWWEIGHTDRAWWEIGHTDRAWWEIGHTDRAWWEIGHTý0,â#.ANN.TO[L1] 

DRAWWEIGHT 
DRAWWEIGHTDRAWWEIGHTDRAWWEIGHTDRAWWEIGHT L111;CO;WI;X;V;RGB 

[1] ë called from DRAWNEURON 

L1N0 L1N1 L1N2 L1N3
L2N1 -2.97 1.38 11.14 -5.94  
Table 4: Weight vector between 
hidden and output layer 

input data output data
min max min max

prior transf. -0.29 2.65 prior transf. 0 1
after transf. -0.5 0.5 after transf. 0.007 0.993  
Table 5: Minimum and maximum values of original and 
transformed data 



[2] CO¢((YFI+YSTäL1),(YFI+YSTä(0ôL1-
1)))((XFI+XTOäL11),(XFI+XFRäL111)) ë 
y: start/end and x: start/end 

[3] WI¢(L1±#.ANN.W)[L11;L111+1] ë weight 
value 

[4] RGB¢255õ0ô(V¢õ255äX¢(|WI)ö 
#.ANN.RW[2])0 0 ë weight ò0 color 
red 

[5] ¨(WI<0)/ßRGB¢255õ0ô0 0 Vß ë weight 
<0 blue 

[6] (FN,ß.W_Lß,(©L1),ß_Tß,(©L11),ß_Fß, 
(©L111)) !WC ßPolyßCO(ßFCOLßRGB) 
(ßLWidthß(õMWäX)) 

MOVE 
MOVEMOVEMOVEMOVE MSG;P;F;PO;L;N 

[1] P F¢MSG[1 3] ë P...parent object, 
F...current object 

[2] PO¢2†3¡MSG ë current position of 
object 

[3] L¢¨ß_LßNUM F ë layer 
[4] N¢¨ß_NßNUM F ë neuron in layer 
[5] ë redraw weights connecting to the 

NEXT layer 
[6] ¨(L<(å1+ã#.ANN.TO))/ß1 CWý 

â#.ANN.TO[L+2]ß 

[7] ë redraw weights connecting to the 
PREVIOUS layer 

[8] ¨((N>0)^(L>0))/ß0 CWý0,â#.ANN.TO[L]ß 

CW 
FT CWCWCWCW T;O;OP;RA 

[1]ë Change Weights (CW) 
[2]ë FTð0  for lines connecting to the 

input of the neuron 
[3]ë FTð1  for lines going the next 

layer 
[4] O¢P,ß.W_Lß,(©L+FT),,†((ß_Tß) 

(ß_Fß),ýFTè(©N)(©T)) ë create 
object's name 

[5] RA¢(P,ß.C_Lß,(©L),ß_Nß,(©N)) !WG 
ßRadiusß ë get RAdius of object 

[6] OP¢†O !WGßPointsß ë get old position 
of object 

[7] OP[;1+FT]¢PO+RA ë calculate new 
position; PO is global (MOVE) 

[8] O !WSßPointsß(¡OP) ë set new 
position of line 

NUM 
Z¢P NUMNUMNUMNUM T;A 

[1]ë find number of neuron out of the 
object's name 

[2] Z¢(~ì\~Aîß0123456789ß)/A¢ 
(ãP)¡(ì\(PÞT))/T 

Conclusion 

In this paper we have presented an APL tool for early 
detection of company failures using neural networks. This 
computing devices proved themselves to be a viable 
alternative to discriminant analysis. 

With this workspace we were able to find networks for 
detection of company failures. Graphical visualization helps 
understanding complex relations that exist in neural nets. 

Further work will include the improvement of the APL 
product and a detailed documentation of the user interface. 
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