next up previous
Next: Comparison with ARIMA Modeling Up: Modeling Previous: The Algorithm

Network Parameters

The following parameters of the artificial neural network were chosen for a closer inspection:

To examine the distribution of these parameters, we conducted a number of experiments: In subsequent runs of the network, these parameters were systematically changed to explore their effect on the network's modeling and forecasting capabilities.

We used the following terms to measure the modeling quality sm and forecasting quality sf of our system: For a time series $X_1,\ldots,X_n$ 
 \begin{displaymath}
s_m = \sqrt{\frac{\sum\limits_{i=1}^n(X_i-\hat{X}_i)^2}{n}} \end{displaymath} (1)
 
 \begin{displaymath}
s_f = \sqrt{\frac{\sum\limits_{i=n+1}^{n+1+r}(X_i-\hat{X}_i)^2}{r}}\end{displaymath} (2)

where $\hat{X}_i$ is the estimate of the artificial neural network for period i and r is the number of forecasting periods. The error sm (equation 1) estimates the capability of the neural network to mimic the known data set, the error sf (equation 2) judges the networks's forecast capability for a forecast period of length r. In our experiments, we used r=20.

Note: For reasons of clarity, in this section we only present graphics for the IBM share price time series. The graphics for the airline passenger time series are very similar.

The figures 7 and 8 demonstrate the effect of variations of the learning rate $\eta$and the momentum $\alpha$ on the modeling (figure 7) and forecast (figure 8) quality: both graphics give evidence for the robustness of the backpropagation algorithm, high values of both $\eta$ and $\alpha$ should be avoided.


  
Figure: Learning rate and momentum, IBM share price, modeling quality
\begin{figure}
 \epsfxsize=80mm\epsfysize=80mm
 \centerline{
\epsfbox [0 247 595 842]{excel/reibmeaw.eps}
}\end{figure}


  
Figure: Learning rate and momentum, IBM share price, forecasting quality
\begin{figure}
 \epsfxsize=80mm\epsfysize=80mm
 \centerline{
\epsffile [0 247 595 842]{excel/reibmeap.eps}
}\end{figure}

The figures 10 and 11 present the effect of different network topologies on the modeling (figure 10) and forecasting (figure 11) quality: The number of input units and the number of hidden units open an interesting view: artificial neural networks with more than approx. 50 hidden units are not suited for the task of time series forecasting. This tendency of ``over-elaborate networks capable of data-miming'' is also reported by [Whi88].

Another parameter we have to consider is the number of presentations. A longer training period does not necessarily result in a better forecasting capability. Figure 9 demonstrates this ``overlearning'' effect for the IBM share price time series: with an increasing number of presentations, the network memorizes details of the time series data instead of learning its essential features. This loss of generalization power has a negative effect on the network's forecasting ability.


  
Figure 9: Modeling vs. forecasting ability
\begin{figure}
 \centerline{
\epsffile {generalization_ibm.eps}
}\end{figure}

These estimations of the network's most important parameters, although rough, allowed us to choose reasonable parameters for our performance comparison with the ARIMA technique, described in the next section.


  
Figure: Number of input and hidden units, IBM share price, modeling quality
\begin{figure}
 \epsfxsize=80mm\epsfysize=80mm
 \centerline{
\epsffile [0 247 595 842]{excel/reibmihw.eps}
}\end{figure}


  
Figure: Number of input and hidden units, IBM share price, forecasting quality
\begin{figure}
 \epsfxsize=80mm\epsfysize=80mm
 \centerline{
\epsffile [0 247 595 842]{excel/reibmihp.eps}
}\end{figure}


next up previous
Next: Comparison with ARIMA Modeling Up: Modeling Previous: The Algorithm
© 1997 Gottfried Rudorfer, © 1994 ACM APL Quote Quad, 1515 Broadway, New York, N.Y. 10036, Abteilung für Angewandte Informatik, Wirtschaftsuniversität Wien, 3/23/1998